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ABSTRACT

The paper prsistrits some basic concepts of the one-parameter logistic latent-

trait model, or Lhe Rasch model. This model assumes that the probability of

a correct answer to 211 item is a function of two parameters, one representing

the difficulty of the item and one representing the ability of the person.

In relation ro a ..!(,nzrcce example, it is demonstrated how the parameters in

the model can be estimated ana how the assumptions of the model can be tested.

Some Possible areas of application of the Rasch model are also discussed.
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INTRODUCTION

It is often the case in educational and psychological measurement that we

want to assess the same dimension by using different items for different

groups of persons. For example, we may want to measure educational achieve-

ment several consecutive years without risking that the test items become

known; or the level of performance may be much lower in one group of persons

than in another group of persons, so that the same items are not suitable.

A concrete example is presented below. Two three-item tests have been admin-

istered to two samples of persons (Sample 1 and Sample 2), each consisting

of 10,000 persons. The tests were constrtfted in such a way that one of the

items (item 3) is common to the tests, while all other items are different.

The following descriptive statistics were computed for Sample 1:

Proportion correct

Item

1 0.85

2 0.50
i Mean 1.51

3 0.16 SD 0.79

For Sample 2 the following descriptive statistics were computed:

Proportion correct

Item

1 0.82

2 0.56 Mean 1.65

: 3
0.27 SD 0.86

-..

I



For item 3 we can, of course, compare the samples directly, and we'find that

Sample 2 displays a somewhat higher level.of performance than Sample 1

(0.27 vs. 0.16). But about the rest of the tests not much can be said. It

can be observed, however, that the small mean difference in favor of Sample 2

on the total test is almost completely accounted for by item 3. This does

seem to ilicate that the test liven to Sample 2 was more difficult'than the

test ,given to Sample 1, since we otherwise would expect about the same

difference in level of performance on the noncommon items as on the common

item.

Except for these general, statements, it does seem quite impossible, however,

to use the descriptive statistics for a fuller comparison of the levels of

performance in the two samples. Only if we were able to determine how much

more difficult the items given to Sample 2 are, might it be possible to

"translate" the scores on this test in such a way that they are comparable

to scores on the test given to Sample I.

It would, at first glance, appear to be quite
/ a difficult task to determine

the level of difficulty of a set of items. However, most of the remainder

of this paper will be devoted to a demonstration that this is in fact possi

ble, aid we will show how our problem of comparing the levels of performance

of Samples 1 and 2 can be solved.

The solution is based on the quite simple notion that level of performance

on an item is governed by two factors: by the ability of the person taking

the item and by the difficulty of the item. While the terms ability and

ditficulty are quite firmly founded in our common sense, we can achieve a

slightly higher precision in these concepts through the following statements:
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1. For any given item, a person with a higher ability should have a

highei chance of passing tha item than 4 person with a lower ability..

2. For persons with the same level of ability, the chance of passing an

easier item should be higher than the chance of passing a more difficult

item.

Common sense could easily accept the view that for any given person the

.probability of answering a certain item correctly should be a function of

the person's ability and the item's difficulty, even though other factors

may also influence the result. But when we have just observed a certain

outcome -- a correctly solved item, say -- problems occur if we want to

attribute that result to either of these two factors: The person may have

solved the item correctly because of a high level of ability or because the

item was easy. Similarly, if we observe that a person fails an item, this

may be due to the fact that the item was quite difficult, or it may be that

the person has a low ability to solve this kind of item.

Thus, while common sense might accept th4,concepts "level of difficulty"

and "level of ability," it is somewhat mind-staggering to consider the

possibility of separating these factors in empirical data. There is,

however, a mathematical-statistical solution to this problem, which was

originally contributed by Rasch (1960). The purpose of this'paer is to

present this solution and the accompanying model (the Rasch model) in a

simple manner; and, even though a series of algebraic expressions will be

presented, it is hoped that the mathematically untrained reader can get at

least an intuitive understanding of the basic concepts of this test-theoretic

model.



THE RASCH MODEL '

.

In developing our case for how to separate person ability and item diffi-

culty, we will start with an assumption about how these factors relate to

the probability of answering an item correctly. We first must introduce

some notation, however. In all, there are n, persons who have answered

k items; we will refer to any specific item as item i and to any specific

i

person as person v. The outcome of the encounter between a person and an

item will be referred to as Avi. If person v solves item i,correctly, we

denote that Avi.I; if the person fails the item, we denote that Avi.o.

We also assume that each person has a certain level of ability which, for

person v, we denote 8
v.

It is assumed that ev remains stable for at

least the duration of the test. We furthermore assume that each item has a

certain level of easiness (i.e., the inverse of difficulty) which we refer

to as e.
1.

We now can express in formal terms our assumption about how person ability

and item easiness relate to the probability of answering an item correctly.

We assume that:

e,.E..

(1) P(A =I.)vi 1+e .E.
V 1

Thus, we assume that the probability that person v answers item i correctly

is a certain multiplicative function of the two factors 'ability and easiness.

Abe function may appear complex, but in fact it is not. What it essentially

does is to express mathematically the two "commonsense" assumptions mentioned

earlier, namely, that a person with a higher level of ability should have a

9
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higher probability of answering an item correctly than a person with a lower

level of ability and that the probability of answering an easier item

correctly should be higher than the probability of answering a more difficult,

item correctly.

This can be seen if we put some numerical values into (1). For example, if

we assume that the easiness parameter is 1 for a certain item, P(Avi=1) =

P.50 if 01, = 1.,. if 61, = 3, then P(Avi=1) = 0.75. If we assume that ov = 2,

we predict that for an item with
i = 0.5, P(Avj=1) = 0.50, and for an item

with ci = 2, we expect P(Avi=1) = 0.80.

If the parameters attain values close to 0, the predicted value of P(A ...11
vi-L.

also is close to 0. If the parameters attain high values, the expected value

of P(Avi= 1) is close to 1, as is required by the fact that a probability must

lie between 0 and 1.

Thus, formula (1) is a convenient way of expressing mathematically what we

have already expressed verbally. What is notable, howelier, is that (1) states

explicitly that the probability of a correct answer shall be a function of

item easiness and person ability only. Thus, no other factor may influence

performance systematically, and in this sense (1) expresses a strong assump-

tion, which may be wrong for a given set of data. Until proven wrong,

however, the simplicity of (1) makes it extremely useful.

We can, of course, also easily determine the probability of an incorrect

answer:

E
V 1

9 .

(2) P(A .=0) = 1P(A =1) = 1 1

v3. vi 1+9 c. 1-4-e c.
v 1 v 1

r-

10



9
However, the expressions (1) and (2) do not solve our problem, since they

presupposg that we know the item easiness and person ability values. Our

task is to arrive at a method for finding out from empirical data what these

values are. Of course, we can never find the true values of these parameters,

since that is impossible in any statistical model, but we can try to derive

estimates of the parameters which are as close as possible and.which, with a

sufficiently large sample of persons and items, are indistinguishable froni

the true parameter values.

Estimating the item parameters

There are many ways in which methods for estimating parameters in a model

can be derived, but we will proceed in an intuitive, nonformal manner.

Let's start with the very simple case in which one person With ability e has
v.

, and ek.answered three items, i,j,k, with easiness parameters ci, E.

(--

From cl) and (2) we can compute the probability of a correct or an incorrect

answer to each of the items. However, to be cable to determine- the probahil

i

ities for patterns of responses of correct and incorrect answers, to a set of

items, we must make an assumption about stochastic). independerice. In this

case, the assumption of stochastic independence means essentially that the

probability of a correct answer to an item should not be influenced by

whether the person passes or fails the other'items in the test. Formally,

this can be expressed 0 the following way for two items, i and j:

(3) P(Avi=1, Avi=1) = P(Avi=1) P(Avi=1)

That is, the probability of answering both items correctly is under the
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assumption of stochastic independence given by the product of the probabil-

itiesities of answering each of the items correctly.

The fact that stochastic independence is assumed does not imply that per-

formance on the items is assumed to be uncortelated in a group of persons:

Persons with a high level of ability tend to get many items right, and

persons with a low level of ability tend to get few items right, so if there

are differences in levels of ability among the persons in a sample, we

observe correlations between performance on the items. What the assumption

of stochastic independence says is that at a given level of ability,
v (i.e.,

when ability is "partialled out"), there should not be any correlations

between performance on different items.

On three items the person can, of course, obtain anything between zero and

three correct answers (ry ). For rv=1 and rv=2, several different

response patterns are possible. By using (1) and (2) we can, under the
..,

assumption of stochastic independence, compute the probabilities of all

these response patterns:

12
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Let's take a closer look at the three response patterns with ry=1. If we sum

the probabilities for these three patterns, we get the person's probability

of obtaining a score of 1 on these items, since there is no other way in

which a score of I can be obtained. Thus:

0
v.c i

+6
v p
*E.4.6

v'E
0 (c

i k
)

k
(5) P(r

v
=1)=

(1+6v
.c

i
)(1+0 v .c

j
)(1+6

v
.c

k
) (1+6 .c )(1+0 .c

j
)(1+9 .c

k
)

We next determine the conditional probability of obtaining a correct answer

on item i, given that a score of I has been obtained (H ). The coryeitional

13
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probability of an event A, given that an event B has happened, is written

P(AIB) and is defined P(AIB) P(AL). We thus get:

P(B)

evEi
(1+6 °E i )(14-,6 v °E j )(1+0 E ) E

1
.

(6) 711
81.711k )

+E +E
1 3 k

(1+81ici)(1-"vEj)(1+017ck)

In the same way we get for items j and k:

(7)

E.

ij -F. E .+E
1 j k

E
k

n1k C +E +E k

Interestingly enough, we find that the'ability parameter disappears from

these conditional probabilities. Thus, for each and every person who ob

tains a raw score of 1, these conditional probabilities are the same.

The fact that the ability parameter does not appear at all in these condi

tional probabilities is,,xharacteristic of the Basch model, and it has an

o"
important implication for est. imation: We can estimate the item parameters

without estimating the person parameters.

The three conditional probabilities above predict proportions of correct

answers to each of the items among the persons who have one correct answer.

Therefore, we can set up a system of equations and solve for the unknown

parameters.

14
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Let's do that for the data presented in the Introduction. Among the 4,083

persons in Sample 1 who had a raw score of 1, we observed the following

frequencies and proportions of correct answers:

Item Frequency Proportion

1 3,567 0.874

2 456 0.112

3 60 0.015

We thus can set up the following equations:

(8)

Cl

Ei.+E 2+E 3

.874

E
2

- .112
E
1

-F. E
2
+E

3

E
3

c1 +c2+c3
.015

We have three unknown item` parameters and we have three equations. Unfortu

nately, however, there is another constraint imposed on the proportions,

namely, that they always sum to 1. We therefore have only two independent

restrictions imposed on the item parameters and can determine only two of

them. One way to solve this problem is to put the parameter value for one

of the items equal to 1. In-this way we do not determine the absolute values

of. the item parameters, but the easiness of the items relative to one of them.

If we set c2=1, we get the following equations:

I

(



I

E1

1 3

4.1 = .874

1 = .112
E
1
+E

3
+I

E
3

.015
E
1
+E

3
+1 "'"

14

By dividing the first equation with the second, we get ci = 7.80, and by

dividing the third equation with the second, we get e3 = 0.13. Thus, item 1

is about eight times as easy as item 2, and item 2 is about eight times as

easy as item 3.

So far, we have been able to get at least some kind of estimate of the rela

tive easiness of the three items given to Sample 1. But we have used only a

part of our data, and for our procedure to be entirely satisfactory, we
1

should use the entire set of observed persons. However, in order for us to

use the other observations, they must yield essentially the same estimates.

We should, therefore, convince ourselves that, for the persons who scored 2

on the test, we can get the same estimates, within statistical limits, as we

obtained for those who scored 1.

The probability of obtaining a score of 2 is, of course, given by the sum

of the probabilities for each of the response patterns with raw score 2

(cf. 4), i.e.:

40.

e 4.2E c.e 2E
'

0 2

-.... (10) P(r
v
=2) =

E. vi k v '`k e 2 (EE. E +E .E +E .c )

v
V 1) lk jk

(1+0
v
e
i
)(1+ (1+0

v
c
k

(1+8v£i) (1+0v
C ) (1 +8vEk)
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The probability of a correct answer to item i is given by the sum of the

probabilities of the response patterns which include a correct response to

item i, and we get the conditional probability, given rv.2, as:

ev2eiej+8v2eiek

(1+evei)(1+6vej)(1+Ovek) eiej+eiek
(11) Tr =

2i evi(Eicj+Eick+EjEk) Ciej+EiCk+EjEk
(14.6vci)(1+evej)(1+617ck)

For items j and k we similarly get:

1 3 k

i
-

.

2- "i!'-j
E
k
+EE.

k

7
2k E E+E E +E cij ikjk

E.0 +=.E
1 k k

In the observed data for Sample 1, there were 4,017 persons who had a score

40,

of 2, and for these persons the following frequencies and proportions of

correct answers were observed:

Item Frequency Proportion

1 3,955 0.985

2 3,531 0.879

3 548 0.136

Again, we can construct a system of equations by setting equal the conditional

probabilities of a correct answer to each of the items and the proportions

of correct answers to the items for the persons with an observed score of 2:

17



(13)

cle2+cic3

-16-

= .985
3 3 +3 3 +3 3

1 2 1 3 2 3

cic2 c 3 = .879

cle2 cle3 e2e3

ele3+e2e3

As before, we have three unknowns, but again there are only two independent

restrictions since the proportions always sum to 2. We solve this problem

in the same way as before, i.e., by setting the parameter value for item 2

equal to 1. We can then solve the equations for the two remaining item

parameters. We get the results: el=7.84 and c3=0.14. These values are very

close to those obtained for score group 1, and the small variations we

observe can be accounted for by stochastic factors which inevitably come

into play even in a sample as large as this one.

Thus, we have shown that it is possible to get highly similar estimates of .

the relative easiness of items from groups of persons who have a different

number of correct answers. But what about the two remaining score groups,

i.e., those with a score of 0 and those with a score of 3? Unfortunately,

these are quite useless for the purpose of estimating the item parameters,

which is seen from the fact that in these groups the predibted proportion of

correct answers is the same for all items. Thus, we have to exclude from.

consideration those persons who have obtained scores of 0 or 3 on the test.

18
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Even though it has been shown that we can use either score group 1 or score

group 2 and still get the same results, our estimation procedure is not yet

4 entirely satisfactory: We would like to employ simultaneously information

from both these groups of persons to get one common set of estimates.

dm easy way of doing that is to put all the information into one set of equa-

tions. In doing so, however, we should not use the proportions of correct

answers brt the frequencies, so that, the score groups influence the result

in relation to their size. What we predict is then the total number of

correct answers to each item, which we call s i. If we ref r to the number

of persons with r correct'answers as n, we can write the equation for item i:

(14) s.= n 7r1

r=1

If we now replace 7
ri

with the corresponding expressions in terms of the item

patame ers (cf. 6, 7, 11, and 12) which we have previously derived, we get for

the three-item test given to Sample l'the .following .equations:

(15)

4083 E1 4017(C
1

E
2+E 1E3)

4-C +E C E E .2 +E E +E E
1 2

4-
-3 1 1 3 2 3

= 3567+3955

4083 E
2

4017(E
1

E
2

+C
2

E
3

)_
456 + 3531,

+E +E +C +.E
2 31 2 3 1 2 1 3

4083 E
3

4017(e
1

E 3+c 283)
,

1+c2 +3 c
1

e
2

+c
1

c
3

+c 2 c 3)
= 60 + 548

19
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As before, there is a constraint imposed on the system since rn
r si, and we

put equal to 1. After a series of algebraic manipulations,. we can solve

the equations and. we get the result:ci =7.862 and e3 =0.139. Again we find

that these estimates are close to those we have obtained earlier, as might

be expected from the quite large size of the sample.

We now have arrived at a procedure for obtaining estimates of the item

parameters. This procedure yields so-called maximum likelihood estimates,

and since it is based on conditional expectations, it is referred to as a

conditional maximum likelihood (CML) procedure. We will not go into any

depth here about different estimation procedures (see instead, Fischer 1974;

Wright and Douglas 1977); suffice it to point out that the CML estimates

have very good properties and that it is a general characteristic of the

kinds of models with which we are dealing here that maximum likelihood

estimates are obtained if observed sample characteristics are predicted from

model parameters (cf. Andersen 1980).

Even in our very simple three-item formulation, the mathematical expressions

involved in the estimation procedure are quite complex and, with just a few

more items, they would fill several pages. Therefore, we need a simpler

P

notation f r a general formulation of the estimation equations.

The complexity stems from the sums of products of the item parameters which

appear in the conditional probabilities (i.e., in the nri). One of these

appears in the numerator (i.e., "above the line"), the other in the denom-

inator (cf. 6, 7, 11, and 12):

The latter involves, for 'score r, the sum of all possible products of the

item parameters taken r at a time. For example, for r=1 we had (cf. 6):

20
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(16) c
1 2

+F
'3

40

and for r=2 we got (cf. 11):

(17) C
1

E
2

+e
1 3

+
2 3

These expressions are called the element'ary symmetric functions of order

r in the item parameters and We will denote them Yr. Yo is defined to be 1.

InthenumeratorofTiri we had for item 1 and for r=1 the following

(cf. 6):

For r=2 we had (cf. 11):

(19) ciC2+ilE.3

These sums of products are related to the y
r

in a relatively simple way. If

from yr we take away Ei by crossing out all those products in which
i
does not

appear and by crossing out ci in those products in which it does appear, we

get the elementary symmetric function of order r-1 in all parameters except c

(i)

and we denote that y r-1 . For example, from (17) we get y
(1)

as:
1

(20) r
2

+c
3
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If we then multiply this expression with ci, we get:

(21) E
1
E
2
4-E

1
E
3

which is the same as (19). .Since the denominator of the formula for 7121 was Y2 ,

we get:

(22) 7 21 Y2

c
1
y
1
(1)

The general form of the expression is, of course:

(i)
E r- 1

(23) 71ri lr .

and we now can write the general form of the estimation equations

as (cf. 14):

(i)
k-1 E.

(24) s = E 1 r-1 nr
Yr

(i =1,.. ,k)

These equations can be solved by hand only when there are two or three

items, but with larger sets of items they can be solved relatively easily

with the help of a computer (e.g., Fischer 1974; Gustafsson 1979a, 1980a).

Estimating the person parameters

We now have shown how parameter values reflecting the relative easiness of a ,

set of items can be determined. But our task is only partially completed:
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We have still not dealt with the person parameters (or the ability parameters),

since these disappeared from our estimation equations for the item parameters.

In principle, we could proceed, in thesame way with the person parameters as

we did with the item parameters. That is, we could determine the conditional

probabilities of obtaining different raw scores, given the observed item

scores, and we would then find that the item parameters disappear, leaving

us with equations in the person parameters only. But we would not be able

to solve these equations, because the elementary symmetric functions in the

-perston parameters are of immense complexity even for very small samples of

persons.

We will, therefore, take another approach, using the item parameters we have

already determined. It has already been concluded that if predictions

involving the parameters to be estimated are equated to observed sample

characteristics, we can get estimates of the unknown parameters.

The basic model (1) expresses the probability of a correct answer to an item

for a certain person. The sum of these probabilities gives us the expected

number of correct answers on the set of items for this person, and we can put

this expression, with the already estimated item parameters inserted, equal

to the observed raw score, i.e.:

k 0 £
v

(25) ry = E

j.=1
1+0v

This expression does not take into account which particular items the person

answered correctly, so all persons with the same raw score must get the same

estimated person parameter. Therefore, we only need to solve (25) for each
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of the 1 to k-1 different raw scores on a set of k items (for r=0 and r=k no

estimates can be obtained).

We will illustrate this for raw scores 1 and 2 on our three-item test, using

the item parameters estimated from the total sample. Thus, we get toe

following equations:

and

7 860
1

+

lf.'
1 4_

.14.1
1 =

1+7.860 1+30
1

1+.14r)
11

7.860
2

1Pn 9.142
2 + --e---- +

1+.149
2

1+7.860
2

1+10
2

Each of the equations resulted in a polynomial and, after a sequence of

algebraic manipulations, we get the following results: 81 = .32 and

8
2
= 2.97

Interpretations of the parameters

Having shown that it is possible to separate person ability and item easiness

theoretically, and also that it is possible to compute estimates of these

parameters from a set of observational data, it may be asked how these

parameters can be interpreted.

Let us first summarize our results. On the basis of the total sample

(except, of course, those persons with zero and three correct answers) we

obtained the following results:

24



Item

1

.

'2

3

Easiness

7.86

1.00

Raw score

2

Ability

0.32

2.97

A higher item parameter indicates an easier item. However, we may want

our scale to reflect item difficulty instead, so that a higher value

indicates a more difficult item. This is easily achieved if we take the

inverse (i.e., 1 ) of the item parameters. We then get the following item

parameters:

Item DifTculty

1 0.13

2 1.00

3 7.14

i
If we call these difficulty parameters

(1) in the following way:

(26) P(A .=1) = e
-r

di

, we can rewrite our basic model

41

This formulation of the model and (1) give, of course, I1*dentical results.

On the.difficulty scale, the parameters can range from 0 to positive infinity.

However, on such a scayle, the parameters may be difficult to interpret, and

especially so since/the person parameters and the item parameters combine

multiplicatively. To solve this problem, we can make a new transformation

in which we-take the natural logarithm of both the item parameters and the

25
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person parameters. We then get the following set of parameters (observe

that only two decimal values are presented but that the calculations have

been carried out with greater accuracy):

Item Log difficulty Raw score Log ability

1 -2.06 1 -1.14

2 0.00 2 1.09

3 1.97

If we set log = c and log 0 =f;
v v

(27) 1)(i%
vi 14-exp(c-01)

c.txp(7,v -0i)

, we can reformulate (26) into:

4

Again, this formulation of the model gives results identical to (1) and (26)

(granted, of course, that in each of the formulations of the model we insert

the correct set of parameters).

We will make one more transformation of our scales. It will be remembered

that, when the item parameters were estimated, we chose to set c2 equal to

1 (and, thereby c2 =0 ).4'The fact that we cannot estimate the absolute

item difficulties but only relative item difficulties is a problem that is

mcre often solved in another way, however; namely, by imposing the constraint

that the log difficulty parameters shOuld sum to 0 (or, equivalently, that

the product of the easiness parameters should be 1). However,'we can easily

make this transformati4n now. The a parameters above sum to -0.09. To

change this to a sum of 0, we have to add 0.03 to each of the 0. parameters.

But if we do that, we also have to add 0.03 to each of the E parameters,
v

,
416
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since otherwise (27) will not give the same results as before the transforma-

tion. We then get the following set of parameters:

Item
Gi

Raw score

1 -2.03 1 -1.11

2 0.03 2 1.12

3 2.00

In most applications of the Rasch model, the item parameters are expressed in

this way, i.e., on a log difficulty scale on which the parameters sum to 0.

However, other transformations are also common; for example, so that negative

numbers are avoided (see, e.g., Wright and Stone 1979).

Let us now take a look at some statements that can be made on the basis of

the estimated parameters.

The odds of success to an item are defined as the ratio of the probability of

success to the probability of failure, i.e.:

exp(c-0i)

1+exp(c-oi)

1
exp(&11-0i)

P

(28) =
vi 1-P .

1+exp(E,v-oi)

For example, if the nrobability of success is 0.75, the odds are 0.75/0.25=3.

The ratio of odds of success to two items, i and j, is:

A

v)

vi
exp(r -o )

(29)
i

exp(o.-o.)
. -c.) 3.v 3
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We find that this ratio is governed exclusively by the item parameters;

again the person parameter disappears. This, of course, indicates that the

ratio is constant over the range of ability and that we can cothpare items

independently of persons.

The same types of statements about relative odds can alRo be made about

persons. If we relate the odds of success for person v to the odds of

Success for person u on item i, we find that:

(30)

A vt .
exp(Ev-oi)

A i
= exp(Fv-11)

exp(Eu-oi)

Here the item parameter disappears and we can conclude that the relative

odds are invariant over items; i.e., we can compare persons independently

of items. Quite interesting practical consequences follow from this: If

the persons have been given different items, we still can compare their

abilities, granted, of course, that we have previously determined the

relative difficulties of the items.

....._

The possibility of making comparison of persons independently of items,

and of items independently of persons, forms the core of Resell's "theory

of specific objectivity" (Rasch 1960, 1977). Expressed in simple terms,

this model requires that in comparing different "objects" (here persons),

different "agents" (here items) should give the same rank order among the

objects. That is, if we rank order the persons in a sample on the basis

of their performance on one set of items, we would expect this rank ordering

ti

to be the same for mother set of items which purports to measure the same

dimension. If this is not 'the case, we would regard the two sets of items

"t°
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as measuring different dimensions, and we should hesitate before using

them interchangeably. Thd theory of specific objectivity is, therefore,

basically a theory of unidimensionality; i.e., it states that only one

dimension should be measured at the same time and that all the items which

are used should be homogeneous in the sense that they all measure the same

dimension.

Testing the Assumptions of the Rasch Model

We have already indicated some of the possibilities for practical applications

of the Rasch model. However, before we proceed to treat some of these

applications in greater detail, it is necessary to discuss the limits of the

aprlicability of the Rasch model.

Even though is can be shown in theory that it is possible to separate

person ability and item difficulty from the answers to a set of items,

this does not always happen in practice. This is because the model is

based on a series of assumptions which may not be fulfilled, and if these

assumptions are violated, we cannot estimate item parameters independently

of persons, and we cannot estimate ability independently of items.

Expressed briefly and in simple terms, the following assumptions are made:

1. We assume that the probability of a correct.answer to an item is a

simple function of a person parameter and an item parameter, as is

expressed in (1).

2. The items are assumed to be homogeneous; i.e., it is assumed that all

items measure the same ability.

20
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Local stochastic independence is assumed; i.e., it is assumed that

the response to one item does not affect the response to another

item. It is also assumed that the responses made by one person do

not affect the responses' of another person.

It can be shown that assumption 3 formally reduces to assumption 2 (cf.

Gustafsson 1980b), so we only have to deal with the first two assumptions.

The basic question to decide is whether one or both of these assumptions

are not fulfilled. If that is the case, the Rasch model will not fit the

data, since the model and the data are based upon incompatible assumptions.

One way to do" this is, of course, to look at the test items to see whether

there is anything in them which may cause a violation of the assumptions.

For example, if the items can be divided into groups which clearly measure

different abilities, we can be sure that the assumption of unidimensionality

is being violated. If, to take another example, there is ample opportunity

of guessing the correct answer, as is often the case in multiplechoice

items, we also may expect that the data will not fit the model since (1)

does not allow for guessing.

But however useful such procedures may be, it would, of course, be desirable

if the model itself could tell, as it were, if a set of data does or does

not fit.

It will be remembered that we have shown for our threeitem test for Sample

1 that the relative difficulties of the items remained roughly the same

whether we used persons with one correct answer or persons with two correct

answers to estimate the parameters. Below are shown frequencies of correct
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answers to three items in another test for persons with one and two correct

answers:

Frequency

Item r=1 r=2

1 988 4,110

2 274 3,169 n1 =1,368

3 156 1,527 n2 =4,403

Applying the same procedures as before, we get the following estimates

of the item parameters for the two groups of persons:

Item r=1 r=2

1 -1.11 -1.24

2 0.37 0.20

3 0.74 1.04

In this case, it is,obviously not true that the relative difficulties of

the items remain invariant over the score groups. The reason for this is

that the data analyzed here have resulted from a true-false test, in

which there is ample opportunity to guess the correct answer.

Thus, we find that when the data do not fit the model, it is no longer true

that the item parameters are invariant over groups of persons. To investigate

this property of the model, we can thus estimate the item parameters within

groups of persons with a different number of correct answers, to see whether

we get the same results. When the sample of persons is small, there will,

of course, be quite a variation among the item parameters due to chance

factors, and it may be difficult to judge whether there are any true dif-

ferences among the item parameters. Andersen (1973; cf. Gustafsson 1980b)

31
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has, however, suggested a procedure that gives a summary statistical test of

the equality of the item parameters.

Applying this test to Sample 1, we find the test statistic to be XL =0.19

with 2 degrees of freedom. Obviously, we cannot reject the null hypothesis

that' the item parameters estimated within the two score groups are equal.

2

For the data presented in this section, the test statistic isx =23.59.

With 2 degrees of freedom this is a very highly significant value, and we

must conclude that there are significant differences among the item parameters

for the two score groups.

This test investigates whether the item parameters are invariant over groups

of persons, and ,it can be applied with the sample of persons divided in any

possible way. But the test does not investigate whether a set of items is

unidimensional or not. To do that, we should study whether the person

A

parameters are invariant over groups of items or not.

To study whether the person parameters are invariant over groups of items,

we. could, of course, divide the items into subsets suspected to measure

different abilities, and then for each person study whether ;he person

parameters estimated from the different groups of items are the same.

But such a test would involve a very large number of comparisons, and it

would be a very unstable test since each person parameter would, in most

cases, be estimated from few items. Martin-Lof (1973; cf. Gustafsson

1980b) has, however; suggested a test of the invariance of each person

parameter over groups of items in which the actual estimation of each

person parameter is avoided.' This test requires, however, at least two

32



-31-

items in each group, so we cannot illustrate its use on our data. The

application of the test is quite straightforward, however.

If we have investigated the invariance of item parameters over groups of

persons and the invariance of person parameters over groups of items, and

if we have been able to conclude that the data fit the model, we can

proceed with any application of the model we would like. However, in

many cases, it is possible to carry out 'sensible applications of the model

even though it has been necessary to conclude that one or more of the

assumptions may have been violated. This is because the presence of small

violations of the assumptions need not matter at allfor the intended
4

application. But if the model is to be used in the presence of such viola-

tions, it must be made likely that the violations of the assumptions do not

carry any negative implications for the validity of the conclusions drawn.

33
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APPLICATIONS OF THE RASCH- MODEL

We can now return to our question in the Introduction: How do we compare

scores obtained on different tests by different groups of.persons?

We have ahead) estimated the item parameters for Sample 1, and doing

that for Sample 2 as well; we get the following results:

Item Sample 1 Sample 2

1 -2.03 -1.51

2 0.03 0.00

3 2.00 1.51

It will be remembered that item 3 was common for the two tests, whereas the

other items were all different. Since we have concluded that item parameters

are (or can be) invariant over groups of persons, we might perhaps expect to

find the same estimate of a3 in the two samples. But this is obviously not

the case, there being a substantial difference in the two estimates of the

difficulty of item 3.

The reason for this is that the difficulties of the items cam only be

determined relative to each other. Thus, if item 3 is administered along

with two easy items, it appears to have a high difficulty, and if it

is administered along with two difficult items, it appears to have a low

difficulty. Butwe know that the true difficulty of an item is the same

independently of which persons have answered it and which other items

happened to be administered along with it. Therefore, we can relate the

difficulties of noncommon'items to each other by using common items as

poitits of reference.

34
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The difficulty of item 3 is 0.49 units higher in the Sample 1 test than in

i

the Sample 2 test. This must mean that items 1 and 2 in the Sample I

. test test are easier than the corresponding items in the Sample 2 test.

To translate the item difficulties of the two sets of items so that the

difficulties of all items are directly comparable, we must make the trans-

formation in such a way that the difficulty of item 3 is the same in the

two .tests. We must, therefore, subtract 0.49 from item 3 in the Sample

1 test, and, of course, also from the other two items in this test (we

could, of course, also have added 0.49 to the items in the Sample 2 test).

After this transformation we get the following item difficultieS:

Item .
Sample 1 Sample 2

1
,. -2.52 -1.51

i

2 -0.46 0.00 .,

3 1.51 1.51

The item difficulties are now expressed on the same scale, and we can

estimate the person Parameters corresponding to different raw scores ont

e
the two tests:

Raw score Sample 1 test Sample 2 test

1 -1.60 -0.94

2 0.63 0.94

If we compare these person parameters corresponding to different raw

scores on the Sample 1 test with those we have previously estimated, we

find that there is a constant difference of 0.49.

,

We now could proceed to estimate a person parameter for each of the persons

in the two samples. We also could compute the means and the standard

35



'-34

deviations of the person parameters and.compare the samples with respect lo

4
these statistics. The frequency distributions of raw scores are presented

Raw score

0 1 2 3

Sample 1:, 906 4,083 4,017 994

Sample 2: 926 3,316 4,088 1,670

It is quite obvious, however, that this procedure would not give us a true

picture of the difference in level of performance of the two groups of

persons. The problem is that we cannot estimate the person parameters

for persons with a raw score of 0 and 3, and since there are more persons

with a score of 3 in Sample 2 than in Sample 1, we would underestimate the

level of performance of Sample 2 if we excluded these persons.

There is a solution to this problem, however. Andersen and Madsen (1977)

have shown that if the distribution of person parameters is assumed to be

of a certain kind, it is not necessary to estimate each of the person

parameters; instead, parameters describing the distribution can be estimated.

In this procedure it is not necessary to exclude persons who have no correct

answer only correct answers, and it can be applied whenever a reasonable

assumption can be made about the distribution of person parameters. Often,

a normal diptribution can be assumed. It is, unfortunately, impossible to

treat here the details of this quite ccmplex procedure, but with the help

of a computer, it is a simple matter to determine the parameters of the

assumed distribution and also to perform a statistical test of whether the

assumption made is reasonable or not.

36
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Assuming that in.each of the samples the person parameters are normally

distributed, the two parameters (mean and stand deviation) which describe

the normal distribution have been estimated, using the difficulty parameters

on the common scale:

Mean

SD

Sample 1

0.46

1.01

Sample '2

0.30

1.00

We find that the SD's are the same, but ,that the mean of Sample 2 is 0.76

units (or.about 75 percent of an SD) higher than the mean of Sample 1.

The validity of this conclusion to large extent hinges on the correctnesst

of the assumption that the person parameters are normally distributed.

The statistical test of the assumption of normality gives for Sample 1

2 2

X=1.04 and for Sample 2
X

=0.22. With 1 degree of freedom none of these

values is significant, so we don't find any reason to doubt the correctness

of the assumption of normality.

It can be noted that we are able to draw the conclusion that the distribution

of person.parameters is normal in spite of the fact that the distribution of

raw scores, especially for Sample 2, is quite far from normal. This is, of

course, because the test given to Sample 2 was somewhat too easy for this

group of persons, resulting in a negatively skewed distribution of raw scores.

We now have solved the problem formulated in the Introduction to this paper,

and we have also indicated the basic properties of the Rasch model. It is

obvious, however, that this model lends itself to the solution of measurement

problems other than this particular one, and we will now briefly indicate some

of these possible areas of application.

37
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Test linking and equating; item banks

The problem that we have dealt with is often referred to an a problem of

test linking. In practical applications, this problem of estimating item

parameters, and, thereby, also person parameters, on a common scale is

approached in the same way as we have done it, except that more than one

item is usually common between the tests. Often ten or more such items

are used. When more than one common item is used, the means of the diffi-

culties of these items are compared across the tests to determine the

constant to be added or subtracted from one or more of the sets of estimated

item parameters.

Some mes one group of persons has been given two or more tests measuring

the same dimension. If we then want to express raw scores obtained on

different tests on the same scale, this problem of tePr equating is easily

solved with the Rasch model: All that needs to be done is to estimate the

item parameters with the items in all tests pooled and then to use these

item parameters to compute the person parameters corresponding to each raw

score on the different tests.

By applying repeatedly linking and equating procedures, it may be possible

to determine on a common scale the item parameters for a large. set of

items. Such item banks may, of course, be extremely useful since it is

possible to construct a virtually infinite number of test forms, which

all give person parameters on the same scale, by selectik.g items from the

bank. Special designs to optimize the creation of item banks have been

developed (see e.g., Wright 1977; Wright and Stone 1979).
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L
Test optimization; level testing and tailored testing

When a parameter in a model is estimated from data, the estimate can have

varying degrees of precision. For example, if\e, small sample of persons

is used, &he estimates of the item parameters will tend to be unstable;

if we estimate the item parameters anew from an equally small sample, we

may observe quite large differences between the sets of estimates. Not

only the number of persons and items in a ;ample determine the precision

with which the item and the person parameters can be estimated, but also

the relative size of the parameters themselves. The statistical information

(I) about the parameters contributed by a re.ponse is given by the expression:

(301.=13(A.=1)(1F(.A.=1 ) ) =
1V V1 V1 (i+exp(E,17ci))'

exp(ccli)

I iv is highest when the probability of a correct answer is 0.5. The

,-information about the person parameter contained in the responses to k

items is the sum of the information contributed by each of the 'responses,

i.e.:

k
(32) I (E,v) = L I.

1=1

The standard error of measurement of the person parameter (SEM[E
v

])

can be obtained from (32). It is:

..

(33) SEM Kv) = 1

f(Tj

3(i
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When the number of items is large (larger than 20-30), the SEM )

is normally distributed, which makes it possible to construct confidence

intervals around the estimated person parameter.

It is quite obvious that the difficulties of the items in a test affect

the SEM
v

) rind also that the precision with which we can estimate any

person parameter is a function of the person parameter itself.

For example, if we have a test Of twenty-five items all with difficulty 0,

the SEM (r,
v

) for persons with an ability of 0 is 0.4. But for persons

with ability -2.0 (and 2.0), the SEM ( ) is 0.62. To achieve an equally

low SEM Kv) for these levels of ability, we would need to administer as

many as sixty items.

.But, of course, another possibility would be .to administer twenty-five

items of difficulty -2.0 to the persons who have ability around -2.0. Doing

this would gain not only shorter testing time but perhaps also a greater

motivation in taking the test, since it likely to be quite frustrating

to try to answer a large umber of Items when the probability of a correct

-answer itp, low, and qUite boring to do so when the probability of a correct

answer is high.

Such a procedure would illustrate the use of level tests, with different

levels of difficulty for different groups of persons. It is necessary,

of course, to have some preliminary estimate of the level of ability of

the persons in order to be able to assign the different forms. Such a

preliminary estimate may be obtained either from a short pretest or from

results achieved on previously administered tests.

40
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But the procedure can, of course, also be developed into a tailored testing

procedure, in which, for each person, the response to one item determines

which item will be given next. It is not difficult to devise such a

sygtem on the basis of the Rasch model, granted that the test items can

be administered by a computer.

0

1 i

AI
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THE RASCH MODEL AND OTHER TEST-THEORETIC MODELS

41E

We will end this introduction to the Rasch model by briefly indicating

differences and similarities between this model and some other test-
.

theoretic models.

Classical Test-Theory

classical test-theory (e.g., Gulliksen 1950; Lord and Novick 1968), the

concept of item difficulty has a prominent place too. The statistic most

commonly used to index item difficulty is the prbportion of correct answers

to the item, or the p-value. But as we saw in our empirical example, the

p-value varies with level of ability of the sample. This statistic, therefore,

cannot be generalized from one sample of persons to another, unless they are

random samples from the same population. In the Rasch model, in contrast,

the estimates of item difficulty remain invariant from one sample of persons

to another, at least as long as the data fit the model.

In classical test theory,, the observed number of correct answers is most

commonly taken to represent person ability. Scores obtained on different

V

sets of items are not comparable,'however, unless the test forms have been

.4carefltly equalized. In he Rascn model. too, ability is estimated from the

number of correct answers, but since item difficulty is taken into account,

results obtained on different sets of items may be compared.

For purposes of item screening, statistics which reflect the relation

between item performance and test performance are relied upon within

classical test-theory. Among such measures of item discrimination, the

biserial and point-biserial correla on coefficients 4re the ones most

42
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frequently used. When the purpose of the test is to reflect individual

differences in performance, items with a high relation to overall test

performance are sought. In the Rasch model, there is no concept which

corresponds to the indices of item discrimination, since it is assumed that

a
all items have th et same degree of relationship with ability. Therefore,

when items are selected for inclusion in a Rasch scale, the criterion is

evenness of discrimination, rather than highness of discrimination. However,

nothing prevents Rasch, scales to be constructed from items with high and
.-

even discrimination (cf. Gustafsson 1980b).

Reliability is the measurement concept which plays the most important

part in classical theory. This concept reflects the accuracy with wh' h

a group of individuals can be rank ordered on the basis of test performance.

The observed test variance is assumed to consist of two independent parts:

true variance, reflecting the true individual differences in performance;

and error variance, reflecting random variation. A simple definition

of the coefficient of reliability is the ratio of true variance to observed

variance. Since the sample variance of ability enters into the estimate of

the reliability coefficient, this coefficient expresses properties of both

the test and the sample of persons.

In the Rasch model the concept of reliability plays a subordinate part,

because this measurement model is oriented toward estimation of individual

ability, rather than toward comparison of individuals. The SEM (P:17) is,

therefore, the most important index of the accuracy of measurement in the

Rasch model.

13
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In conclusion, we have seen a recurring difference between classical

test-theory and the Rasch model; in the former there is a dependence on

specific samples of persons and items, whereas in the latter this is not the

case. It is obvious, therefore, that when an application requires measurement

of the same dimension with different sets of items, the Rasch model offers

great advantages. In other', less demanding measurement applications,

however, the greater complexity and stricter assumptions of the Rasch

model may make classical test-theory a good alternative.

Other item-response models

The Rasch model may be viewed as one member of a larger family of models,

all members of which have the characteristic that an explicit model is

specified for the relation between observable item performance and an

unobservable trait assumed to underlie performance. These item-response,

or latent-trait, models all allow estimation of invariant person and item

parameters.

The Rasch model is the simplest of these models in the sense that only

,f*

one parameter, the difficulty, is used to specify item characteristics. In

other models, more parameters are used to characterize the items. Thus,

in the so called three-parameter model (Lord and Novick 1968), each item is

described by three parameters: difficulty, discrimination, and guessing.

The difficulty parameter has an interpretation similiar to that in the

Rasch model. The discrimination parameter represents the degree of relation-

ship betufeen item performance and ability, and the guessing parameter

,represents the expected level of performance on the item for persons with

very low ability.

14



This model thus makes less strict assumptions of the nature of the observa-

tions than does. the Rasch model, and it can be expected to fit a wider range

of empirical data than the Rasch model. There is a price to be paid for

this generality, however: the three-parameter lacks the conceptual simplicity

and elegance of the Rasch model; estimation of parameters in the model

presents great technical 'difficulties and requires large samples of persons

and items; and the model is considerably more difficult to apply than is the

Rasch model.

There has beena rather heated debate on the relative virtues of different

item-response models, some arguing that the Rasch model is always the

proper choice, and others arguing that the Rasch model may never be expected

to fit data. Such\extreme positions hem unnecessary, however, since it

appears that each of the models has both strengths and weaknesses.

The major weakness of the Rasch model is that it involves such strong

assumptions. In particular, it cannot be expected to fit multiple-choice

items. For some applications, such as equating tests of widely differing

difficulty, violation of the assumption of nb guessing may have very

serious implications (Gustafsson 1979b), so great care must be exercised

if the Rasch model is to be applied to items of the multiple-choice type.

The major weakness of the three-parameter model is that results obtained

with this model are not dependable unless the samples of items and persons

are large. This model is, therefore, best suited for large-scale applications

of multiple-choice tests, whereas the Rasch model seems best suited for

small-and large-scale applications in which guessing is not a major

factor in test performance.
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